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Abstract. Density gradient theory with two different forms for the equation of state is used to
model nonane nucleation. At each temperature considered, the two parameters in the equations
of state are found by equating the equilibrium chemical potential and pressure in the liquid and
vapour state. The coefficient of the square gradient is then chosen so that the surface tension for
a planar surface calculated by density gradient theory matches the experimental value. Results
for nucleation rates are compared with density functional calculations following the procedure
described by Nyquistet al (Nyquist R M, Talanquer V and Oxtoby D W 1995J. Chem. Phys.
103 1175). The density gradient values are within a factor of ten of the classical theory results
and exhibit almost identical temperature dependences. In contrast, the density functional theory
predicts rates that are much larger and exhibit weaker temperature dependence than classical
theory. The two equations of state predict values that differ by a factor of about ten, indicating
that the form of the equation of state in the unstable region is important in determining the
nucleation rate from density functional theories. This conclusion is supported by calculations
using a model equation of state, for which the chemical potential is three intersecting straight
lines.

Density functional theory provides a means of relating thermodynamic properties of
inhomogeneous systems to intermolecular potentials without calculating the full partition
function. It has been applied to nucleation by Oxtoby and co-workers [1, 2]. Recently
Nyquist et al [3] have developed a semi-empirical form of density functional theory and
compared its predictions with experimental measurements for a number of substances.
Previously, Barrett [4] adopted a similar approach for nonane nucleation, but using the
simpler density gradient theory together with the empirical Peng–Robinson equation of
state [5]. In this letter we compare the predictions of density gradient theory with those
of density functional theory in a semi-empirical approach to nonane nucleation. We also
compare values using the van der Waals equation of state with those using the Peng–
Robinson equation. Finally, we examine the sensitivity of density gradient results to the
form of the equation of state in the experimentally inaccessible unstable region between the
two spinodals in an analytically soluble model.

In classical nucleation theory, the rate of droplet formation per unit volume for a
vapour at temperatureT can be expressed asJCl = J0 exp(−1�Cl/kT ) where J0 =
NAv(n

2
v/nl)

√
(2σ/πmv) and the classical change in the grand potential on formation of the

critical nucleus is

1�Cl = 16πσ 3

3(1p)2
(1)
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wherenv andnl are the molar densities in the vapour and liquid,NAv is Avogadro’s number,
σ is the bulk surface tension,mv is the molecule mass and1p is the pressure difference
between the centre of the droplet and the bulk vapour. Assuming incompressible liquid and
ideal gas, this is given by

1p = nlRGT ln S (2)

where the saturationS = pv/pve is the ratio of the vapour pressure to its value at equilibrium,
and RG = kNAv is the gas constant. Note that we are using the historical expression for
JCl , omitting a factor 1/S which more careful considerations show should be included [6].

In density functional theories of nucleation [1],1� is given by the value of a functional
of the density,n, at the saddle point (i.e. whereδ 1�/δn = 0). In its simplest form,
known as density gradient theory or the square-gradient approximation, the change in grand
potential is given by

1� =
∫ (

c

2
(∇n)2 + [f (n) − µ(nv)n] + pv

)
d3r (3)

wheref (n) is the free energy andµ(n) the chemical potential (both per unit volume) of a
uniform fluid at molar densityn. The parameterc can be related to the direct correlation
function of the uniform vapour at densityn [7] and so is density dependent; however, here
we ignore this density dependence. The variational equationδ 1�/δn = 0 for a spherically
symmetric droplet profile is then

c
d2n

dr2
+ 2c

r

dn

dr
= µ(n) − µ(nv). (4)

In the planar case, the second term on the left-hand side is missing andnv has its equilibrium
valuenve whereµ(nve) = µ(nl). It is then possible to obtain the surface tension without
first calculating the density profile [8]:

σ =
√

2c

∫ nve

nl

dn [(f (n) − µ(nve)n) + pve)]
1/2. (5)

To use these formulae we need expressions for the thermodynamic properties of the uniform
fluid at all densities. These can be obtained from the equation of state for the fluid
p ≡ p(n, T ) using the thermodynamic relationsp = µn − f and df/dn = µ. In this
work, we consider two equations of state: the van der Waals equation, with the Carnahan–
Starling form for the three-dimensional hard-sphere repulsive term [9]:

p = nRGT
1 + η + η2 − η3

(1 − η)3
− 1

2
αn2 (6)

and the Peng–Robinson equation [5]:

p = nRGT

1 − nb
− n2a

1 − nb(2 − nb)
. (7)

In equation (6),η = nπd3/6 whered is the hard-sphere diameter. Our choice of equation
(7) was influenced by the work of Careyet al [8] who used it in a semi-empirical
treatment of the surface tension ofn-alkanes. Equations (6) and (7) each contain two
parameters (α and d in equation (6),a and b in equation (7)). Rather than relate these
to microscopic and/or critical properties of the fluid, we choose them so that, at each
temperature considered, the pressure and chemical potential of the equilibrium liquid and
vapour are equal, i.e.p(nve) = p(nl) = pve and µ(nve) = µ(nl) wherepve and nl are
the experimentally determined equilibrium vapour pressure and liquid density. Finally the
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Figure 1. The variation of the chemical potential for van der Waals fluid (solid line) and Peng–
Robinson fluid (dashed line). The parameters are chosen to match the equilibrium properties of
nonane at 273 K.

Figure 2. The density profile for nonane atT = 273 K, S = 13.2. Square-gradient theory
results obtained using the van der Waals equation (solid line) and the Peng–Robinson equation
(dashed line) Also shown (dotted line) is the profile from the density functional approach of
Nyquist et al [3].

parameterc is determined at each temperature from the requirement that the surface tension
calculated from equation (5) is equal to the experimentally measured value.

We now report the results of some calculations for nonane. The equilibrium thermo-
physical data needed (equilibrium vapour pressure, bulk liquid density and surface tension)
were taken from Hunget al [10]. Sinceα (or a) appears linearly in equation (6) (or (7)) we
can eliminate it using the equality of pressures and chemical potentials in liquid and vapour
at equilibrium to obtain a single non-linear equation ford (or b). This equation was then
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solved by Newton–Raphson iteration. Note that it is necessary to re-evaluatenve from the
conditionp(nve) = pve at each iteration. Figure 1 shows the chemical potentials resulting
from this procedure atT = 273 K. Also shown is the straight line throughnl with gradient
1/n2

l χT (whereχT is the isothermal compressibility of the liquid) which, according to a
standard thermodynamic relation, is equal to dµ/dn at nl . We note that the gradient ofµ
from the empirical Peng–Robinson equation is closer to this experimental value of dµ/dn

than that from the van der Waals equation.
The parameterc was found from equation (5), the integral being evaluated by quadrature,

and the differential equation (4) was solved numerically subject to the boundary conditions
dn/dr = 0 at r = 0 andn = nv at r = rmax wherermax was taken to be twice the classical
critical radius. Typical density profiles are shown in figure 2. Also shown is the density
profile calculated using the mean-field density functional theory of Oxtoby and Evans [1],
as applied to nonane by Nyquistet al [3]. In this, the intermolecular potential is divided
into a hard-sphere repulsive part and an attractive part, taken to have the Yukawa form. For
a uniform fluid, the grand potential in this approach reduces to−pV , wherep is the van
der Waals pressure given by equation (6) (whereα is the integrated strength of the attractive
part of the potential). Finally, the range parameter in the Yukawa potential is chosen so that
the surface tension calculated in this model equals the experimentally measured value. All
approaches yield the same values for bulk parameters, and therefore also the same values
for classical nucleation rates. However, it can be seen from figure 2 that the profile from
density functional theory is much sharper than those from density gradient theory. This
is in agreement with the results of Luet al [11] who found that the ‘10–90’ widths of
profiles from density gradient theory were larger than those from density functional theories
at temperatures far below the critical temperatureTc (using the parameters atT = 273 K
in the van der Waals equation givesTc = 804 K, significantly higher than the experimental
value of 595 K).

Table 1. Temperatures and saturation ratios used in the calculations for figure 3.

T S JCl

233 40.7 2.31
248 25.1 114
258 19.1 2010
273 13.2 8.99× 104

285 10.0 6.60× 105

299 7.5 5.78× 106

315 5.9 1.36× 109

Once the density profile is known,1� can be found from equation (3) by quadrature.
We consider values of exp([1�cl −1�]/kT ) which is equal to the ratio of non-classical to
classical nucleation rates, if the prefactor is assumed to be the same in both cases [3]. We
find that this ratio varies very weakly with saturation (increasing by a factor of less than 10
as the nucleation rate increases from 1 m−3 s−1 to 1012 m−3 s−1) showing that the density
gradient approach gives essentially the same saturation dependence as classical theory, as
well as experiment and the density functional results of Nyquistet al [3]. We have also
investigated the ratio of nucleation rates at various temperatures and saturations, as shown
in table 1. The temperatures were selected from those at which measurements were made by
Hunget al [10] and the saturations correspond approximately to an experimentally observed
nucleation rate of 105 m−3 s−1. Figure 3 shows the ratiosJ/JCl = exp([1�cl − 1�]/kT )
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Figure 3. The variation of the ratioJ/Jcl of the density functional results to classical values
using square-gradient theory with the van der Waals equation (circles), the Peng–Robinson
equation (triangles) and the non-local functional of Nyquistet al (squares). The dashed line
indicates the trend of the experimental measurements of Hunget al (see the text).

for the three density functional theories considered. Density gradient theory with the van
der Waals equation of state gives nucleation rates about one tenth of those of classical
theory, but exhibiting almost identical temperature dependence. Using the Peng–Robinson
equation of state we obtain rates within a factor of three of classical values with the ratio
J/JCl decreasing slightly with increasing temperature. By contrast, rates from the mean-
field density functional theory are significantly larger than classical rates and the ratio
J/JCl exhibits a strong temperature dependence (the density functional nucleation rates do
not increase as rapidly with temperature as classical theory rates). The dashed line in figure
3 is 105/JCl and so indicates the ratio of experimentally measured rates to classical theory.

Two differences with previously published results should be mentioned: our density
functional results are slightly larger than the values of Nyquistet al [3], presumably because
their values are averages over a number of saturations whereas ours are for a single saturation
at each temperature. Our density gradient results using the Peng–Robinson equation differ
slightly from those we reported previously [4] since our earlier results were for a constant
classical nucleation rate of 106 m−3 s−1 and also used a cruder parametrization of the
equation of state.

To investigate further the dependence of nucleation rates in density gradient theory on
the form of the equation of state we consider a model system with a chemical potential
that varies as shown in figure 4. The chemical potential rises linearly with gradientλ2

v as
the density increases fromnve to some densityna, then it falls linearly with gradient−λ2

2
as the density increases fromna to nb, and finally it rises linearly with density fromnb

to nl (and beyond). The free energy in this model consists of three parabolae, with pairs
intersecting atna andnb. It is therefore a straightforward extension of the double-parabola
model considered by Iwamatsu [12]. By adjustingλ2 while keepingλv andλl constant, we
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Figure 4. The chemical potentialµ as a function of the molar densityn for the model fluid.

can investigate the sensitivity of the nucleation rate to the form of the unstable part of the
equation of state.

As before, we are interested in comparing the grand potential difference for a droplet
from density gradient theory,1�, with that from classical theory,1�Cl , using a surface
tension calculated from density gradient theory. We consider the fractional difference
(1� − 1�Cl)/1�Cl and scale all densities according ton → (n − nve)/nl . It is then
possible to reduce the dependence of the fractional difference to three parameters which
we take to be the (scaled) supersaturated vapour density,nv, and the two ratiosλl/λv and
λ2/λv. The equality of the chemical potential and pressure atn = 0 andn = 1 leads to the
following equations relatingna andnb to these ratios:

λ2
vna − λ2

2(nb − na) + λ2
l (1 − nb) = 0 (8)

λ2
vnanb = λ2

l (1 − na)(1 − nb). (9)

Onceµ(n) (and therefore alsof (n)) is specified, the surface tension in the square-gradient
approximation can be found directly from equation (5). In the supersaturated vapour, the
classical free-energy change on cluster formation is still found from equation (1), but with
1p now given by

1p = λ2
vnv + 1

2
λ2

vn
2
v

[(
λv

λl

)2

− 1

]
. (10)

Note that1p is not simply proportional to the change in chemical potential1µ = λ2
vnv

because of the non-ideality of the vapour and non-zero compressibility of the liquid in this
model.

In the droplet case, the profile is found by solving equation (4). Sinceµ(n) is a linear
function of n this can be done analytically in each of the three regions 06 r 6 rb, rb 6
r 6 ra, andra 6 r, wherera and rb are defined implicitly byn(ra) = na andn(rb) = nb.
Equations forra andrb can be found by equating values ofn and dn/dr in adjacent regions
at ra andrb and using the boundary conditions dn/dr = 0 at r = 0 andn → nv asr → ∞.
This procedure yields

rb cos1R + g(rb) sin1R = ra

(
1 − λ2

2[nb − na]

µ∗

)
(11)
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rb sin1R − g(rb) cos1R = λ2

µ∗

[
λvra(na − nv) + (nb − nv)

]
− 1

λ2
(12)

where1R = λ2(ra − rb), µ
∗ = nvλ

2
v + (1 − nb)λ

2
l and

g(rb) = λ2

λ2
l

− λ2

λl

rb cothλlrb + 1

λ2
. (13)

Once suitable parameters are specified, equations (11) and (12) can be solved numerically
for ra and rb. The density profilen(r) is now completely specified and can be used in
equation (3) to find1�. All of the integrations can be performed analytically, but the
resulting somewhat lengthy expressions will not be reproduced here.

Figure 5. The variation of the fractional difference [1� − 1�Cl ]/1�Cl with nv/na for
λ2/λv = 0.1 (solid line), 1 (dashed line), and 10 (dotted line).

We are particularly interested in the sensitivity of the results toλ2. Figure 5 shows
the variation of the fractional difference [1� − 1�Cl ]/1�Cl with nv/na for λl/λv = 0.7
and three values ofλ2/λv. The ratio is positive for small values ofnv/na and negative
for larger values, in agreement with Iwamatsu’s results (which correspond toλ2 → ∞
in our model). Note thatna depends onλ2/λv according to equations (8) and (9): for
λ2/λv = 0.1, 1, 10 we havena ≈ 0.049, 0.22, 0.41 respectively, so the curves in figure 5
correspond to very different values ofnv. Figure 6 shows the variation of the fractional
difference withnv for two values ofλ2/λv differing by 10%. These parameter values are
comparable to those used in the semi-empirical treatment of nonane, but the sensitivity of
the model to all parameter values makes it difficult to make even qualitative comparisons
with real fluids. Nevertheless, figures 5 and 6 strongly suggest that results for real fluids
will be sensitive to the form of thep–n curve in the unstable region.

We have shown that density gradient theory with scaled parameters fails to reproduce
the results of mean-field density functional theory, and furthermore the results are sensitive
to the form of the equation of state used, particularly in the experimentally inaccessible
region between the two spinodals. These findings suggest that improvements to the
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Figure 6. The variation of the fractional difference [1� − 1�Cl ]/1�Cl with nv for
λ2/λv = 0.20 (solid line) and 0.22 (dashed line).

density functional formalism for nucleation are needed before quantitative agreement with
experiment can be expected. To date, work has concentrated on the hard-sphere part of the
free-energy functional (see [13] for a review of recent advances), but these theories still
reduce to the van der Waals form when a uniform density is assumed. Other improvements
(such as an alternative division between core and attractive potential or an improved
treatment of the attractive part of the functional) are likely to be required for a reliable
density functional theory of nucleation. Comparisons with Monte Carlo results for model
fluids, such as that performed by Leeet al [14], could also be useful in identifying the
strengths and weaknesses of the density functional approach.
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